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Abstract

Postbuckling responses of shear deformable laminated plates supported by a tensionless elastic foundation and
subjected to in-plane compressive edge loads or a uniform temperature rise are investigated. The formulations are based
on the higher order shear deformation plate theory with a von Karmén-type of kinematic non-linearity and include the
plate-foundation interaction, for which the foundation reacts in compression only. The thermal effects are also included
and the material properties are assumed to be independent of temperature. The initial geometric imperfection of the
plate is taken into account. The analysis uses a two step perturbation technique to determine the postbuckling response
of the plate. An iterative scheme is developed to obtain numerical results without using any prior assumption for the
shape of the contact region. The numerical illustrations concern the postbuckling behavior of antisymmetric angle-ply
and symmetric cross-ply laminated plates resting on tensionless elastic foundations of the Pasternak-type, from which
results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral con-
straint has a significant effect on the postbuckling response of the plate subjected to either mechanical or thermal
loading when the foundation stiffness is sufficiently large.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Contact between flexible plate elements and hard substrates is an issue of concern in a variety of many
technological applications, particularly in analysis and design of delaminated multilayered plates that
contain interlaminar defects. The local buckling of such plates is one special class of unilateral buckling
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problems. This contact buckling problem may be modeled as a thin plate resting on a tensionless elastic
foundation. The solution method required to determine the response of such plates on tensionless elastic
foundations is quite complicated because the contact region is not known at the outset. However, the
capability to predict the postbuckling response of composite laminated plates with unilateral constraints
subjected to in-plane edge compressive loads or thermal loading is of prime interest to structural analysis.

Many studies based on the classical plate theory for the contact buckling of thin plates subjected to
uniaxial compression are available in the literature. Among those, Seide (1958) studied contact effects in
buckled plates of infinitely long under simply supported boundary conditions with longitudinal edges
immovable. This work was then extended to the case of orthotropic thin plates under simply supported and
clamped-free boundary conditions by Shahwan and Waas (1998). The buckling strength of finite size plates
with unilateral constraints was considered by Bezine et al. (1985), Wright (1993), Shahwan and Waas (1994)
and Smith et al. (1999a,b) using finite element method (FEM) and Rayleigh-Ritz approaches. All the
aforementioned studies focused on the cases of linear buckling problem and they concluded that the lateral
constraint increases the buckling load. In contrast, there have been fewer investigations on the postbuckling
analysis of unilaterally constrained plates. Ohtake et al. (1980) studied the postbuckling behavior of a
simply supported square thin plate with unilateral constraints using a finite element scheme coupled with a
penalty method. Chai (2001) studied the postbuckling behavior, including secondary buckling and snap-
ping of a clamped thin plate unilaterally constrained by a rigid foundation. de Holanda and Gongalves
(2003) presented a postbuckling analysis of a simply supported thin plate resting on a tensionless elastic
foundation. In their analysis non-linear finite element equations based on Marguerre’s shallow shell theory
modified by Mindlin hypothesis were formulated. In these studies only isotropic plates were considered and
most of them have assumed perfectly flat initial configurations. However, to the best knowledge of the
authors’, studies on contact postbuckling of composite laminated plates subjected to thermal loading have
not been reported in the literature.

The present paper extends the previous works (Shen, 1999, 2000a) to the case of shear deformable
laminated plates supported by a tensionless elastic foundation. The temperature field considered is assumed
to be a uniform distribution over the plate surface and through the plate thickness. The material properties
are assumed to be independent of the temperature. The formulations are based on the higher order shear
deformation plate theory with a von Kdrman-type of kinematic non-linearity and include the plate-foun-
dation interaction, for which the foundation reacts in compression only. The analysis uses a two step
perturbation technique to determine the postbuckling response of the plate. An iterative scheme is devel-
oped to obtain numerical results without using any prior assumption for the shape of the contact region.
The initial geometric imperfection of the plate is taken into account but, for simplicity, its form is assumed
to be as the buckling mode of the plate.

2. Analytical formulations

Consider a rectangular plate of length a, width » and thickness ¢ which consists of N plies, simply
supported at four edges, and resting on an elastic foundation. The origin of the coordinate system is located
at the corner of the plate in the middle plane. The plate is assumed to be geometrically imperfect, and is
subjected to a compressive edge load P, in the X-direction or exposed to a uniform temperature field. Let U,
¥V and W be the plate displacements parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal
and Z is perpendicular to the plate. ¥, and ¥, are the mid-plane rotations of the normals about the ¥ and X
axes, respectively. The plate is attached to an elastic foundation of the Pasternak-type. The reaction of the
foundation is assumed to be p = K;W — K,V>W, where p is the force per unit area, K| is the Winkler
foundation stiffness and K is a constant showing the effect of the shear interactions of the vertical elements,
and V? is the Laplace operator in X and Y. This reaction, however, is only compressive and occurs only
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where W is positive. Denoting the initial geometric imperfection by W' (X, Y), let W (X, Y) be the additional
deflection and F(X,Y) be the stress function for the stress resultants defined by N, = F ,,, N, = F ., and
N, = —F,,, where a comma denotes partial differentiation with respect to the corresponding coordinates.

Reddy (1984a) developed a simple higher order shear deformation plate theory, in which the transverse
shear strains are assumed to be parabolically distributed across the plate thickness and which contains the
same dependent unknowns as in the first order shear deformation theory, and no shear correction factors
are required. From Reddy’s higher order shear deformation plate theory (see Reddy, 1984b), including the
plate-foundation interaction and thermal effects, the non-linear differential equations of such plates in the
von Karman sense are

La(7) = Lio(P) = Lis(P,) + Lua(F) — Lis(N') — Lio(M") + H(W) K\ — K> V277
— LW+ F) (1)
o e o e e e o
Lon(F) + Loo(F,) + L (V) — Lou(W) — Los(N') = —5 LW 2w W) )
Ly(W) + La(V) = Ls(¥y) + Laa(F) = Las(N') = Lss(S™) = 0 (3)
Lu(W) = Lo(¥) + Lis(P,) + Las(F) — Lis(N') = Lyg(S') = 0 (4)
where H(W) is the Heaviside step function and takes care of the tensionless character of the foundation
— 1 W>0
nm {4 w2 5

and the linear operators Zij( ) and the non-linear operator L( ) are defined as in Shen (2000a).
Attention is confined to the two cases of: (1) antisymmetric angle-ply laminated plates; and (2) sym-
metric cross-ply laminated plates from which solutions for single-layer isotropic and orthotropic plates
follow as limiting cases. Note that for these cases the plate remains flat up to the bifurcation point unless
there is an initial geometric imperfection, as previously shown in Shen (1999, 2000a).
The forces, moments and higher order moments caused by elevated temperature are defined by

F—T —T =T
N, M, P v [ A
N, M, P, |=) / A, | AT(1,2,72%)dZ (6a)
[V, M, P, LAl
and
AR AT
=T —T =T
S, | =M, |- 32 P, (6b)
=T 7" Pl
| “xy | Xy xy
in which
[ 4, | Qll le Qm_ C; 52 o
Ay | = - Qn On 0O N ¢ [0622:| (7)
[ Ay | O O Dol [205 —2cs

where AT is temperature rise from a reference temperature at which there are no thermal strains, o, and oy,
are the thermal expansion coefficients in the longitudinal and transverse directions, and Q,; are the
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transformed elastic constants, details of which can be found in Shen (1999, 2000a), and ¢ = cos 6, s = sin 0,
where 6 is the lamination angle with respect to the plate X-axis.

The four edges of the plate are assumed to be simply supported and either “movable” for compressive
buckling problem or “immovable” (i.e., the membrane shear force is zero and the average in-plane dis-
placement normal to the edge is zero) for thermal buckling problem, so that the boundary conditions are

X=0a

W="=0 (8a)
Ny =0, M,=P,=0 (8b)
/ N.dY +o,tb =0 (for compressive buckling problem) (8c)
/ / —dXdY =0 (for thermal buckling problem) (8d)
Y=0,b:
W=V =0 (8e)
N,=0, M,=P,=0 (8f)
/ N,dX =0 (for compressive buckling problem) (8g)
/ / —dYdX =0 (for thermal buckling problem) (8h)

where o, is the average, externally applied axial stress, M, and M, are the bending moments, and P, and
P, are the higher order moments defined as in Reddy (1984a,b).
The average end-shortening relationships are

4 1 (b reou
_x:__/ / U axar
a
o°F .4\ /0¥, oV, 8§ . W
/ / H ”aY2+A‘26X2+(Blﬁ_ﬁElﬁ)(aY+6X)_ﬁE‘6aXaY}

1wy _awar
oX oX X

//—deX
°F .4 .\ /0¥, oY, 8 . oW
//Hax 12W+(B%_?E%)(WJFW)_ﬁEzﬁ—aan}

_%(_W) AL —)}deX (9b)

— (4, N© +AT2NyT)}dXdY (9a)

oY Yy oy
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where 4, and 4, are plate end-shortening displacements in the X- and Y-direction. In Eq. (9) and what
follows, [4;], [B;], [D}, [E;], [F;] and [H}] (i,j = 1, 2, 6) are the reduced stiffness matrices and determined
through relationships (Shen, 1999, 2000a)

A'=A", B=-A"'B, DD=D-BA'B, EE=—-A"'E, FF=F-EA'B,
H =H-EA'E (10)

where 4;;, B;; etc., are the plate stiffnesses, defined in the standard way.

3. Analytical method and solution procedure

Having developed the theory, one is in a position to solve Egs. (1)—(4) with boundary conditions (8).
Before proceeding, it is convenient to first define the following dimensionless quantities for such plates (with
7, defined as in Shen (1999)), in which the alternative forms 4, and k, are not needed until the numerical
examples are considered.

x=nX/a, y=n¥[b, B=a/b, (W, W)= (W W)/[D;Dsd; )"
F=F/[D}\D3,]'?, (¥, V) = (P, V,)a/n[D}, Dypd; 45,]*

Y14 = [D§2/DT1]1/2a Yo = [ATl/AM]/Za Vs = _Aﬁlﬂz/Azz

(rr1s92) = (szA;)az/“onz[DﬁDZz]l/z

. _ (11)
(MmePwa) = (Mx7My74PX/3t2’ 4Py/3t2)a2/n2DT1 [DTIDZZAIIASZ]IM
(K1 , k]) = Fl (a4/7r4D’]*1 R b4/E22t3), (Kz, kz) = Ez(dz/ﬂszTl R bz/E22t3)
(8:,8,) = (A/a, 4,/b)b* /47 D}, Dy} A3)
)y = 0,b%t/47°[D}\ D3] ?, I = AT
Also let the thermal expansion coefficients for each ply be
i = danto, %22 = A% (12)
where ¢ is an arbitrary reference value, and let
N 73
ran=-> [ (a2 (13)
k=1 -1
Egs. (1)-(4) may then be written in dimensionless form as
L (W) = Lia(Ws) = Lis(Wy) + yiaLia(F) + HW) KW — KoV W) = 9, LW + W, F) (14)
1
Lot (F) + paaloa (W) + v24Los (W) — vaaloa(W) = — 5“/24/32L(W +2W W) (15)
Ly(W) + Lo (¥s) — Lz (W) 4 714L3a(F) = 0 (16)
Ly(W) = Lap(¥s) + Las(¥y) + p14Laa(F) = 0 (17)

where the non-dimensional linear operators L;;( ) and the non-linear operator L( ) are defined as in Shen
(1999).
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The boundary conditions of Eq. (8) become

x=0,n
W=%,=0 (18a)
Fa=0, M,=P,=0 (18b)

, O°F . .

/ B =5 dy+ 4),* =0 (for compressive buckling problem) (18¢c)
0, =0 (for thermal buckling problem) (18d)

y=0,m
W=%=0 (18e)
F,=0, M,=P,=0 (18f)

T OF . .

= dx =0 (for compressive buckling problem) (18g)

0
0, =0 (for thermal buckling problem) (18h)

and the unit end-shortening relationships become

o*F oO°F oy, oY, 2w
o, = 2 oY,
x nzﬁ Vo / / {{Vmﬁ V32 + V247223 <.B o + o > /24y516ﬁa 5 ]

ow ow ow* .
- 5?24( o > — Vo a o ox (V24“/T1 - Vs"/Tz)AT}dXdy (19a)
0*F 62F oY, oY, orw
oy = 4n2[3 . R 7sP el + Y2aV230 | B=— o +6— 27’243’526,86 o
1 ow ow ow*
2?24/3 ( o ) - V2452E 6—y + (P12 — VsVnVW}dydx (19b)

With the use of Egs. (14)—(19), the postbuckling response of shear deformable laminated plates resting
on a tensionless elastic foundation subjected to uniaxial compression or a uniform temperature rise is now
determined by means of a two step perturbation technique, for which the small perturbation parameter has
no physical meaning at the first step, and is then replaced by a dimensionless deflection at the second step.
The essence of this procedure, in the present case, is to assume that

W(x,y,e ZF’WJXJ/ F(Xy7)_z‘0/fj(xy)
(X, Z#lﬁx,xy 7, (x,y,2) ZP’*//V,xy

where ¢ is a small perturbation parameter and the first term of w;(x,y) is assumed to have the form

wi(x,y) = A(lll) sin mx sin ny (21)
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The initial geometric imperfection is assumed to have the similar form
W*(x,y,¢) = eaj, sinmx sinny = ?#AEII) sin mx sin ny (22)

where u = aj, /A(lll) is the imperfection parameter.

All the necessary steps of the solution methodology are described below, but the solutions are not re-
peated here for convenience, with the minor changes included that are needed to make them applicable to
tensionless foundations instead of conventional foundations.

First, the assumed solution form of Eq. (20) is substituted into Eqs. (14)—(17) to obtain a set of
perturbation equations by collecting the terms of the same order of .

Then, Egs. (21) and (22) are used to solve these perturbation equations of each order step by step. At
each step the amplitudes of the terms w;(x,), fj(x,¥), ¥;(x,¥), and ¥ ,(x,y) can be determined, e.g. Bﬁ?,
B(zf)), Bf)zz), etc., except for B(()’O) (j=0,2,4,...) and which can be determined by the Galerkin procedure. As a
result, the large deflection asymptotic solutions of W(x,y), F(x,y), P«(x,y) and ¥,(x,y) are obtained.

Next, upon substitution of W(x,y), F(x,y), ¥«(x,») and ¥,(x,y) into Eqs. (18c) and (19a) or Eqgs. (18d)
and (18h), the postbuckling equilibrium paths for the plate subjected to uniaxial compression can be written
as

e =20 4002 40w (23a)

m

5, = 5)(c0) + 5)(62) I/Vri + 5}({4) [/V”‘: 4. (23b)
and for the plate subjected to a uniform temperature rise can be written as

dr =0 40w 0w (24)
in which W, is the dimensionless form of maximum deflection, and /lff), 5@ and z@ (i=0,2,4,...) are given
in detail in Appendix A.

Eqgs. (23) and (24) can be employed to obtain numerical results for full non-linear postbuckling load-end
shortening and/or load-deflection curves of shear deformable laminated plates subjected to uniaxial com-
pression or a uniform temperature rise and resting on a tensionless elastic foundation. Since the foundation
reacts in compression only, a possible uplifting region is expected. The solution procedure is complicated
and therefore an iterative procedure is necessary to solve this strong non-linear problem. In applying the
contact condition, the plate area is discretized into a series of grids, and the contact status is assessed at
each grid location. From Eq. (A.2) in Appendix A one can see some equations, e.g. Oi;, Qi3 and Qs
involving K, K, and the contact function H[W(x,,y,)], where W (x,,y,) is the deflection at the grid coor-
dinate (x,,,) and summation is carried out over all grid coordinates by using the Gauss-Legendre quad-
rature procedure with Gauss weight assigned C}E,M ). It is found that an acceptable accuracy can be obtained
by taking into account 20x20 points, which is employed in the next section.

As is well known, the instability phenomenon is designed as bifurcation, since it occurs with the
bifurcation of a new equilibrium path from the original one. The buckling load (or buckling temperature)
of perfect plates can be obtained by setting 4 = 0 (or W'/t = 0), while taking W,, = 0 (or W/t = 0). Based
on Eq. (5), when W, = 0 the buckling load for unilaterally constrained plate is identical to that of the
unconstrained plate. Hence we define A, (W,, = 0%) as the buckling load for the plate resting on tensionless
elastic foundations. The minimum buckling load (or buckling temperature) is determined by considering
Eq. (23a) or (24) for various combinations of m and n which determine the numbers of half-waves in the
X- and Y-directions respectively.
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4. Numerical examples and discussions

Numerical results are presented in this section for perfect and imperfect, unilaterally constrained shear
deformable laminated plates where the outmost layer is the first mentioned orientation. A computer
program was developed for this purpose and many examples have been solved numerically, including the
following.

The accuracy and effectiveness of the present method for the compressive postbuckling and thermal
postbuckling behaviors of shear deformable laminated plates with or without elastic foundations were
examined by many comparison studies as previously given in Shen (1999, 2000a,b,c, 2001). In addition, the
postbuckling response for an isotropic thin square plate subjected to uniaxial compression are calculated
and compared in Table 1 with the analytical solutions of Dym (1974) and FEM results of Sundaresan et al.
(1996). Then the thermal postbuckling response for a (+45),; laminated rectangular plate subjected to a
uniform temperature rise are calculated and compared in Table 2 with the FEM results of Thankam et al.
(2003). The material properties adopted here are: Ej|/E» = 25, Gi2/En = G13/E» = 0.5, Gy3/Eyn =0.2,
vi; = 0.25 and oy, /o1, = 10. These comparisons show that the results from the present method are in good
agreement with the existing results, thus verifying the reliability and accuracy of the present method.

A parametric study intended to supply information on the postbuckling response of unilaterally con-
strained shear deformable laminated plates subjected to uniaxial compression or a uniform temperature rise
was undertaken. For all of the examples the plate width-to-thickness ratio b/t = 20, all plies are of equal
thickness and the material properties adopted as in Lee and Lee (1997) are: E;; = 155 GPa, Ey» = 8.07 GPa,
G12 = G13 =4.55 GPa, G23 =325 GPa, Vip = 022, oy = —0.07 x 10_6/0C and Oy = 30.1 x IO_G/OC.
Typical results are shown in Figs 1-12, in which 2, = ax(b/t)z/Ezz and It = oczzAT(b/t)Z. It is noted that in
Figs. 1-8, for the plate resting on tensionless elastic foundations the buckling load is obtained by using
W/t =1.0e — 4. In all these figures W /t and W/t mean the dimensionless forms of, respectively, the
maximum initial geometric imperfection and additional deflections of the plate.

Figs. 1 and 2 give, respectively, the postbuckling load-deflection and load-shortening curves of (£45),;
laminated rectangular plates with § = 5 resting on tensionless and conventional elastic foundations of the
Pasternak-type subjected to uniaxial compression. Two different values of foundation stiffnesses
(k1, k) = (10, 1) and (100, 10) are considered. The results for the same unconstrained plate (referred to as
“foundationless plates” in the figures) are also given as comparators. The buckling loads of the plate resting
on tensionless elastic foundations with (k;,k,) = (10, 1) and (100, 10), compared to the buckling load of the
unconstrained plate, represent increases of about 4.8% and 34%, respectively. This increase becomes greater
as the foundation stiffness is increased, or vice versa. The results also show that the postbuckling load-
deflection curve for the plate resting on a tensionless elastic foundation lies between the two of the
unconstrained plate and the plate resting on a conventional elastic foundation.

Table 1

Comparisons of postbuckling response for an isotropic thin square plate subjected to uniaxial compression (v = 0.3)
A/ (D) e
w/t Sundaresan et al. (1996) Dym (1974) Present
0.0 1.0 1.0 1.0
0.2 1.0137 1.0137 1.0137
0.4 1.0547 1.0546 1.0547
0.6 1.1233 1.1229 1.1232
0.8 1.2198 1.2184 1.2196
1.0 1.3445 1.3413 1.3443

oub*t/m*D 4.0081 4.0 4.0
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Table 2

Comparisons of thermal postbuckling response for a (+45),; laminated rectangular plate subjected to a uniform temperature rise
(b/t = 100, E]]/E22 = 25, G]z/Ezz = G]}/Ezz = 05, G23/E22 = 02, Vi = 0.25 and azg/om = 10)

}“T/(;LT)cr
W]t =075 p=10 =15
Thankam et al. Present Thankam et al. Present Thankam et al. Present
(2003) (2003) (2003)
0.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.042 1.0412 1.039 1.0392 1.043 1.0427
0.4 1.167 1.1649 1.158 1.1570 1.174 1.1713
0.6 1.376 1.3720 1.356 1.3539 1.393 1.3868
0.8 1.670 1.6640 1.635 1.6309 1.702 1.6911
1.0 2.053 2.0426 1.995 1.9892 2.101 2.0866
otzz(AT)cr(b/t)z 12.709 12.649 9.493 9.4584 6.410 6.3939
80 80
XX tensionless foundations X tensionless foundations
| (45),, ol (49,
B=5.0,b/t=20 B=5.0,b/t=20
40 + 3 '
20 - .
W/t=0.0
——————— Wit=0.1
0 d | | 0 ! ! | |
0 1 2 _ 3 0 1 2 3 4 5
Wit o
L: (k) k,) = (0, 0), (m, n) = (5, 1) L: (ky, k) = (0, 0), (m, n) = (5, 1) *
2: (k,, k) = (10, 1), (m, n) = (6, 1) 2: (k,, k) = (10, 1), (m, n) = (6, 1)
3: (k,, k) = (100, 10), (m, n) = (7, 1) 3: (ky, k,) = (100, 10), (m, n) = (7, 1)
(a) load-deflection (b) load-shortening

Fig. 1. Postbuckling behavior for a (£45),; rectangular plate resting on tensionless foundations.

Figs. 3 and 4 give, respectively, the postbuckling load-deflection and load-shortening curves of (0/90)g
laminated rectangular plates with =5 resting on tensionless and conventional elastic foundations of
the Pasternak-type subjected to uniaxial compression. It can be seen that the foundation stiffness affects
the postbuckling response of the (0/90)¢ plate more than that of the (£45),; one. In the present exam-
ple the buckling loads of the plate resting on tensionless elastic foundations with (ki,k;) = (10,1) and
(100, 10), compared to the buckling load of the unconstrained plate, represent increases of about 13.9%
and 111%, respectively. It can also be seen that the load-shortening curve of the plate resting on a ten-
sionless elastic foundation with (k;, k) = (100, 10) becomes lower than that of the unconstrained plate
when §, > 2.

It is noted that we choose f = 5 here because for the low value of the plate aspect ratio, e.g. f = 1, there
are no positive deflections and no contact region is expected under the mechanical loading conditions. In
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90 90
X (+45),, (+45),,
B=5.0,b/t=20 B£=5.0,b/t=20

60

30 - 1
—— Wik=00
——————— Wit=0.1

0 ' L L 0 1 1 | !
0 1 2 3 0 1 2 3 4 5

1: foundationless plate, (m, n) = (5, 1)

Wit

2: tensionless foundation (k,, k,) = (100, 10), (m, n) = (7, 1)
3: conventional foundation (k,, k,) = (100, 10), (m, n) = (9, 1)

(a) load-deflection

1: foundationless plate, (m, n) = (5, 1)
2: tensionless foundation (k,, k,) = (100, 10), (m, n) = (7, 1)
3: conventional foundation (k,, k,) = (100, 10), (m, n) = (9, 1)

(b) load-shortening

Fig. 2. Postbuckling behavior for a (£45),; rectangular plate resting on conventional and tensionless foundations.

100 100
7_“,( tensionless foundations A \ tensionless foundations 5
0T (090), 80 (0/90), P
= 5.0, b/t =20 = 5.0, b/t =20 -
60 60
40 40 F
20 — Wit=00 20k — Wit=00
AT Wi=o1 | L Wit=0.1
N ) ) o . . . ,
0 1 2 _ 3 0 1 2 3 4 5
Wit S
1: (k, k,) = (0, 0), (m, m)= (3, 1) 1: (k,, k,) = (0, 0), m, n) = (3, 1) X

2: (k,, k)= (10, 1), (m, m) = (3, 1)
3: (k,, k) = (100, 10), (m, n) = (5, 1)

(a) load-deflection

2: (k,y k) = (10, 1), (m, m) = (3, 1)
3: (k,, k) = (100, 10), (m, m) = (5, 1)

(b) load-shortening

Fig. 3. Postbuckling behavior of a (0/90) rectangular plate resting on tensionless foundations.

contrast, even for the square plate subjected to thermal loading the positive deflection may occur and a
possible contact region is expected as shown in the next example.

Figs. 5 and 6 give, respectively, the thermal postbuckling load-deflection curves of (+15),; laminated
square plates resting on tensionless and conventional elastic foundations of the Pasternak-type subjected to
a uniform temperature rise. Now the plate buckles with (m,n) = (1,2) and a possible contact region is
expected. The thermal buckling loads of the plate resting on tensionless elastic foundations with
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1: foundationless plate, (m, n) = (3, 1)

2: tensionless foundation (k , k,) = (100, 10), (m, n) = (5, 1)
3: conventional foundation (k,, k,) = (100, 10), (m, n) = (6, 1)

(a) load-deflection
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4779

(0/90),
| B=5.0,b/t=20
1
-
- 7/2/
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0 I 2 3 s s

1: foundationless plate, (m, n) = (3, 1)

2: tensionless foundation (k, k,) = (100, 10), (m, n) = (5, 1)

3: conventional foundation (k,, k,) = (100, 10), (m, n) = (6, 1)
(b) load-shortening

Fig. 4. Postbuckling behavior of a (0/90)y rectangular plate resting on conventional and tensionless foundations.
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1: (k,, k) = (0, 0)
2: (k,, k) = (10, 1)
3: (k,, k) = (100, 3)

Fig. 5. Thermal postbuckling load-deflection curves for a (£15),; square plate resting on tensionless foundations.

(k1,ky) = (10, 1) and (100, 3), compared to the thermal buckling load of the unconstrained plate, represent
increases of about 6% and 25%, respectively.

Figs. 7 and 8 give, respectively, the thermal postbuckling load-deflection curves of (90/0)g laminated
rectangular plates with f = 5 resting on tensionless and conventional elastic foundations of the Pasternak-
type subjected to a uniform temperature rise. In this case, the unconstrained plate and the plate resting on a
tensionless elastic foundation with (ki, k,) = (10, 1) have buckling mode (m,n) = (6,1), and for the plate
resting on tensionless and conventional elastic foundations with (k;,%;) = (100, 3) the plate buckles with
(m,n) = (7,1). Note that for these two plates, (£15), and (90/0)g, when (%1, k,) = (100, 10) the plates will
have buckling mode (m,n) = (1,1) and no contact region is expected.
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1: foundationless plate
2: tensionless foundation, (k,, k,) = (100, 3)
3: conventional foundation, (&, k,) = (100, 3)

Fig. 6. Thermal postbuckling load-deflection curves for a (£15),; square plate resting on conventional and tensionless foundations.
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1: (k,, k) = (0, 0), (1m, m) = (6, 1)
2: (k k) = (10, 1), (m, m) = (6, 1)
3: (k,, k) = (100, 3), (m, m) = (7, 1)

Fig. 7. Thermal postbuckling load-deflection curves for a (90/0)g rectangular plate resting on tensionless foundations.

Postbuckling load-shortening and/or load-deflection curves for imperfect as well as perfect plates are
plotted in each of Figs. 1-8. The imperfect curves show that the effect of an initial geometric imperfection
on the postbuckling response is substantial. This conclusion is valid for the plate resting on both tensionless
and conventional elastic foundations.

Fig. 9 shows the deformed shapes of perfect (£45),; and (0/90)g plates resting on tensionless elastic
foundations of three different values of k; and k, in the postbuckling range (W /¢t = 1.0). It can be seen that
the contact area increases slightly as foundation stiffness increases. The transverse displacements in the
contact regions are smaller than those in the non-contact regions. If the foundation is quite rigid, e.g.
(k1,k2) = (100, 10) and (200,20) in this example, there are no transverse displacements in the contact re-
gions. Fig. 10 shows the deformed shapes of unilaterally constrained perfect (+45), and (0/90) plates at
different points of the postbuckling path (W /¢t = 0.5, 0.75, 1.0). It can be seen that the difference between
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80 p=5.0,b/t=20

1.0 15 _ 20
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1: foundationless plate, (m, n) = (6, 1)

2: tensionless foundation, (k,, k,) = (100, 3), (m, n) = (7, 1)
3: conventional foundation, (k,, k,) = (100, 3), (m, n) = (7, 1)

Fig. 8. Thermal postbuckling load-deflection curves for a (90/0)g rectangular plate resting on conventional and tensionless founda-
tions.

2.0 2.0
Compressive postbuckling Compressive postbuckling
L5 (+45),,, f=5.0 L3T 0m0), p=50

-1.0 L L L L -1. L L L L
0.0 0.2 0.4 0.6 0.8 1.0 ! 00.0 0.2 0.4 0.6 0.8 1.0
11 (k, k)= (10, 1), (m, =6, 1) X4 11 (k, k) = (10, 1), (m, =3, 1) X4
2: (ky, k,) = (100, 10), (m, n)=(7, 1) 2: (k,, k,) = (100, 10), (m, n)=(5, 1)
3: (ky, k,) = (200, 20), (m, n)=(9, 1) 3: (k,, k,) = (200, 20), (m, n)=(7, 1)
(a) (£45),r plate (b) (0/90)s plate

Fig. 9. Deformed shapes of perfect laminated plates with different values of foundation stiffness in the postbuckling range.

the displacements in the contact and non-contact regions decreases as the applied load is increased. Note
that in Fig. 10, the mode of postbuckling deformation is unchanged, i.e., (m,n) = (6,1) for the (£45),;
plate and (m,n) = (3, 1) for the (0/90)g plate. The results also show that the contact area remains constant
when the deflection increases from W/t = 0.5 to 1.0. In reality, mode changes are possible in the deep
postbuckling range (Chai, 2001), and as a result the contact region expands as the plate deflection is
increased and the effect of unilateral constraint becomes more pronounced.

Figs. 11 and 12 are thermal postbuckling results of (90/0)q plates analogous to the compressive
postbuckling results of Figs. 9 and 10. They lead to broadly the same conclusions as do Figs. 9
and 10.
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(b) (0/90)s plate

Fig. 10. Deformed shapes of perfect laminated plates supported by a tensionless foundation in the postbuckling range.
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1: (k,, k,) = (10, 1), (m, n)=(6, 1)
2: (k,, k,) = (100, 3), (m, n)=(7, 1)

Fig. 11. Deformed shapes of perfect (90/0)g plates with different values of foundation stiffness in the thermal postbuckling range.
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1.5 | (90/0), (k,, k)= (100, 3)
B=5.0, (m,n)=(7, 1) 3

Fig. 12. Deformed shapes of perfect (90/0)¢ plates supported by a tensionless foundation in the thermal postbuckling range.
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5. Concluding remarks

Postbuckling analysis of shear deformable laminated plates supported by a tensionless elastic foundation
of the Pasternak-type subjected to in-plane compressive edge loads or a uniform temperature rise has been
presented by using an analytical-numerical method. The advantage of the present method is that the
solution is in an explicit form which is easy to program in computing full non-linear load-end shortening
and/or load-deflection curves without any prior assumption for the shape of the contact region. A para-
metric study for perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates
has been carried out. The numerical results showed that the unilateral constraint has a significant effect
on the postbuckling response of the plate subjected to either mechanical or thermal loading when the
foundation stiffness is sufficiently large.

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China under Grant
50375091. The first author is grateful for this financial support.

Appendix A

In Egs. (23) and (24)

(2,42, 49) = m(so,sz,&), 884 = — (50,5,
80 = pudy, 6% = 32152@1(1 +2u) (A1)
o = 252[32 714724Ch </7m_J413 + ;1:21 > (1+ (1 +2p)°
in which (with g;; and g;; defined as in Shen (1999))
So = u RS i’/14“/24@2(1 +2u), Si= : 714724C1 (Cos = Caa)
1+ 16 256

m*  ntp
+2)

Cos =21+ p)*(1 42 2@(
24 (4w 1 0: 113 Vel

b 8
C44:(l+u)(l+2,u)[2(1—|—,u)2+(1+2,u)]( +"2—ﬁ)
i yaa
Jiz = 0Ci(14+p) — OnCi,  Jai = QuCii(1 + p) — 011Gy
M
O = Ou + > CYHW (x0, 3)|[Kr + Ko (m® + )]

g=0

M
O13= 01+ Y CMHW (v, y,)][Ki + Ka(m + 9 )]
g=0

M
O3 = O3 + Z CéM)H[W(XgJ’g)HKI + K (9m* + n*p)]

g=0
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m* it
O = gos + V14Yum’n B M, O=—+—+Cn
806 Y7 Y6
O13 = g3 + V1472 9m’ 0 wa O3 = gus + “/14“/249’”2”2/32% (A.2)
&136 8316
4m? 4n*
w:1+'\" 27’ '\:w2+ oo P
V6 Y147247230 a1+ s dm? V7 = V24 T V147247223 - y3224n2B2
in the above equations, for the case of uniaxial compression
C11 = C13 = mz, C31 = 9}’}12, C22 =0 (A3)
and for the uniform temperature loading case
Cii = (ynm* + 9’ B),  Ciz = (ypnm* + 9’ B),  Cyi = Oypm® + ypon’ )
(m* 4y ) + 2psmPn® B2 (A4)
C22 = 2 2 2
V24 — V5
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