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Abstract

Postbuckling responses of shear deformable laminated plates supported by a tensionless elastic foundation and

subjected to in-plane compressive edge loads or a uniform temperature rise are investigated. The formulations are based

on the higher order shear deformation plate theory with a von K�arm�an-type of kinematic non-linearity and include the

plate-foundation interaction, for which the foundation reacts in compression only. The thermal effects are also included

and the material properties are assumed to be independent of temperature. The initial geometric imperfection of the

plate is taken into account. The analysis uses a two step perturbation technique to determine the postbuckling response

of the plate. An iterative scheme is developed to obtain numerical results without using any prior assumption for the

shape of the contact region. The numerical illustrations concern the postbuckling behavior of antisymmetric angle-ply

and symmetric cross-ply laminated plates resting on tensionless elastic foundations of the Pasternak-type, from which

results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral con-

straint has a significant effect on the postbuckling response of the plate subjected to either mechanical or thermal

loading when the foundation stiffness is sufficiently large.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Contact between flexible plate elements and hard substrates is an issue of concern in a variety of many
technological applications, particularly in analysis and design of delaminated multilayered plates that

contain interlaminar defects. The local buckling of such plates is one special class of unilateral buckling
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problems. This contact buckling problem may be modeled as a thin plate resting on a tensionless elastic

foundation. The solution method required to determine the response of such plates on tensionless elastic

foundations is quite complicated because the contact region is not known at the outset. However, the

capability to predict the postbuckling response of composite laminated plates with unilateral constraints
subjected to in-plane edge compressive loads or thermal loading is of prime interest to structural analysis.

Many studies based on the classical plate theory for the contact buckling of thin plates subjected to

uniaxial compression are available in the literature. Among those, Seide (1958) studied contact effects in

buckled plates of infinitely long under simply supported boundary conditions with longitudinal edges

immovable. This work was then extended to the case of orthotropic thin plates under simply supported and

clamped-free boundary conditions by Shahwan and Waas (1998). The buckling strength of finite size plates

with unilateral constraints was considered by Bezine et al. (1985), Wright (1993), Shahwan and Waas (1994)

and Smith et al. (1999a,b) using finite element method (FEM) and Rayleigh–Ritz approaches. All the
aforementioned studies focused on the cases of linear buckling problem and they concluded that the lateral

constraint increases the buckling load. In contrast, there have been fewer investigations on the postbuckling

analysis of unilaterally constrained plates. Ohtake et al. (1980) studied the postbuckling behavior of a

simply supported square thin plate with unilateral constraints using a finite element scheme coupled with a

penalty method. Chai (2001) studied the postbuckling behavior, including secondary buckling and snap-

ping of a clamped thin plate unilaterally constrained by a rigid foundation. de Holanda and Gonc�alves
(2003) presented a postbuckling analysis of a simply supported thin plate resting on a tensionless elastic

foundation. In their analysis non-linear finite element equations based on Marguerre’s shallow shell theory
modified by Mindlin hypothesis were formulated. In these studies only isotropic plates were considered and

most of them have assumed perfectly flat initial configurations. However, to the best knowledge of the

authors’, studies on contact postbuckling of composite laminated plates subjected to thermal loading have

not been reported in the literature.

The present paper extends the previous works (Shen, 1999, 2000a) to the case of shear deformable

laminated plates supported by a tensionless elastic foundation. The temperature field considered is assumed

to be a uniform distribution over the plate surface and through the plate thickness. The material properties

are assumed to be independent of the temperature. The formulations are based on the higher order shear
deformation plate theory with a von K�arm�an-type of kinematic non-linearity and include the plate-foun-

dation interaction, for which the foundation reacts in compression only. The analysis uses a two step

perturbation technique to determine the postbuckling response of the plate. An iterative scheme is devel-

oped to obtain numerical results without using any prior assumption for the shape of the contact region.

The initial geometric imperfection of the plate is taken into account but, for simplicity, its form is assumed

to be as the buckling mode of the plate.
2. Analytical formulations

Consider a rectangular plate of length a, width b and thickness t which consists of N plies, simply
supported at four edges, and resting on an elastic foundation. The origin of the coordinate system is located

at the corner of the plate in the middle plane. The plate is assumed to be geometrically imperfect, and is

subjected to a compressive edge load Px in the X -direction or exposed to a uniform temperature field. Let U ,

V and W be the plate displacements parallel to a right-hand set of axes (X ; Y ; Z), where X is longitudinal

and Z is perpendicular to the plate. Wx and Wy are the mid-plane rotations of the normals about the Y and X
axes, respectively. The plate is attached to an elastic foundation of the Pasternak-type. The reaction of the

foundation is assumed to be p ¼ K1W � K2r2W , where p is the force per unit area, K1 is the Winkler

foundation stiffness and K2 is a constant showing the effect of the shear interactions of the vertical elements,
and r2 is the Laplace operator in X and Y . This reaction, however, is only compressive and occurs only
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where W is positive. Denoting the initial geometric imperfection by W
�ðX ; Y Þ, let W ðX ; Y Þ be the additional

deflection and F ðX ; Y Þ be the stress function for the stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and

Nxy ¼ �F ;xy , where a comma denotes partial differentiation with respect to the corresponding coordinates.

Reddy (1984a) developed a simple higher order shear deformation plate theory, in which the transverse
shear strains are assumed to be parabolically distributed across the plate thickness and which contains the

same dependent unknowns as in the first order shear deformation theory, and no shear correction factors

are required. From Reddy’s higher order shear deformation plate theory (see Reddy, 1984b), including the

plate-foundation interaction and thermal effects, the non-linear differential equations of such plates in the

von K�arm�an sense are
eL11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ eL14ðF Þ � eL15ðN
TÞ � eL16ðM

TÞ þ HðW Þ½K1W � K2r2W 	
¼ eLðW þ W

�
; F Þ ð1Þ

eL21ðF Þ þ eL22ðWxÞ þ eL23ðWyÞ � eL24ðW Þ � eL25ðN
TÞ ¼ � 1

2
eLðW þ 2W

�
;W Þ ð2Þ

eL31ðW Þ þ eL32ðWxÞ � eL33ðWyÞ þ eL34ðF Þ � eL35ðN
TÞ � eL36ð�STÞ ¼ 0 ð3Þ

eL41ðW Þ � eL42ðWxÞ þ eL43ðWyÞ þ eL44ðF Þ � eL45ðN
TÞ � eL46ðS

TÞ ¼ 0 ð4Þ
where HðW Þ is the Heaviside step function and takes care of the tensionless character of the foundation
HðW Þ ¼ 1 W > 0

0 W 6 0

�
ð5Þ
and the linear operators eLij( ) and the non-linear operator eL( ) are defined as in Shen (2000a).

Attention is confined to the two cases of: (1) antisymmetric angle-ply laminated plates; and (2) sym-

metric cross-ply laminated plates from which solutions for single-layer isotropic and orthotropic plates

follow as limiting cases. Note that for these cases the plate remains flat up to the bifurcation point unless

there is an initial geometric imperfection, as previously shown in Shen (1999, 2000a).

The forces, moments and higher order moments caused by elevated temperature are defined by
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where DT is temperature rise from a reference temperature at which there are no thermal strains, a11 and a22

are the thermal expansion coefficients in the longitudinal and transverse directions, and Qij are the
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transformed elastic constants, details of which can be found in Shen (1999, 2000a), and c ¼ cos h, s ¼ sin h,
where h is the lamination angle with respect to the plate X -axis.

The four edges of the plate are assumed to be simply supported and either ‘‘movable’’ for compressive

buckling problem or ‘‘immovable’’ (i.e., the membrane shear force is zero and the average in-plane dis-
placement normal to the edge is zero) for thermal buckling problem, so that the boundary conditions are

X ¼ 0; a:
W ¼ Wy ¼ 0 ð8aÞ

Nxy ¼ 0; Mx ¼ Px ¼ 0 ð8bÞZ b

0

Nx dY þ rxtb ¼ 0 ðfor compressive buckling problemÞ ð8cÞ

Z b

0

Z a

0

oU
oX

dX dY ¼ 0 ðfor thermal buckling problemÞ ð8dÞ
Y ¼ 0; b:
W ¼ Wx ¼ 0 ð8eÞ

Nxy ¼ 0; My ¼ Py ¼ 0 ð8fÞZ a

0

Ny dX ¼ 0 ðfor compressive buckling problemÞ ð8gÞ

Z a

0

Z b

0

oV
oY

dY dX ¼ 0 ðfor thermal buckling problemÞ ð8hÞ
where rx is the average, externally applied axial stress, Mx and My are the bending moments, and Px and
Py are the higher order moments defined as in Reddy (1984a,b).

The average end-shortening relationships are
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where Dx and Dy are plate end-shortening displacements in the X - and Y -direction. In Eq. (9) and what

follows, ½A�
ij	, ½B�

ij	, ½D�
ij	, ½E�

ij	, ½F �
ij 	 and ½H �

ij	 (i; j ¼ 1, 2, 6) are the reduced stiffness matrices and determined

through relationships (Shen, 1999, 2000a)
A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B;

H� ¼ H� EA�1E ð10Þ
where Aij, Bij etc., are the plate stiffnesses, defined in the standard way.
3. Analytical method and solution procedure

Having developed the theory, one is in a position to solve Eqs. (1)–(4) with boundary conditions (8).

Before proceeding, it is convenient to first define the following dimensionless quantities for such plates (with
cijk defined as in Shen (1999)), in which the alternative forms k1 and k2 are not needed until the numerical

examples are considered.
x ¼ pX=a; y ¼ pY =b; b ¼ a=b; ðW ;W �Þ ¼ ðW ;W
�Þ=½D�

11D
�
22A

�
11A

�
22	

1=4

F ¼ F =½D�
11D

�
22	

1=2
; ðWx;WyÞ ¼ ðWx;WyÞa=p½D�

11D
�
22A

�
11A

�
22	

1=4

c14 ¼ ½D�
22=D

�
11	

1=2
; c24 ¼ ½A�

11=A
�
22	

1=2
; c5 ¼ �A�

12=A
�
22

ðcT1; cT2Þ ¼ ðAT
x ;A

T
y Þa2=a0p

2½D�
11D

�
22	

1=2

ðMx;My ; Px; PyÞ ¼ ðMx;My ; 4Px=3t2; 4Py=3t2Þa2=p2D�
11½D�

11D
�
22A

�
11A

�
22	

1=4

ðK1; k1Þ ¼ K1ða4=p4D�
11; b

4=E22t3Þ; ðK2; k2Þ ¼ K2ða2=p2D�
11; b

2=E22t3Þ

ðdx; dyÞ ¼ ðDx=a;Dy=bÞb2=4p2½D�
11D

�
22A

�
11A

�
22	

1=2

kx ¼ rxb2t=4p2½D�
11D

�
22	

1=2
; kT ¼ a0DT

ð11Þ
Also let the thermal expansion coefficients for each ply be
a11 ¼ a11a0; a22 ¼ a22a0 ð12Þ
where a0 is an arbitrary reference value, and let
ðAT
x ;A

T
y Þ ¼ �

XN
k¼1

Z tk

tk�1

ðAx;AyÞk dZ ð13Þ
Eqs. (1)–(4) may then be written in dimensionless form as
L11ðW Þ � L12ðWxÞ � L13ðWyÞ þ c14L14ðF Þ þ HðW Þ½K1W � K2r2W 	 ¼ c14b
2LðW þ W �; F Þ ð14Þ

L21ðF Þ þ c24L22ðWxÞ þ c24L23ðWyÞ � c24L24ðW Þ ¼ � 1

2
c24b

2LðW þ 2W �;W Þ ð15Þ

L31ðW Þ þ L32ðWxÞ � L33ðWyÞ þ c14L34ðF Þ ¼ 0 ð16Þ

L41ðW Þ � L42ðWxÞ þ L43ðWyÞ þ c14L44ðF Þ ¼ 0 ð17Þ
where the non-dimensional linear operators Lij( ) and the non-linear operator L( ) are defined as in Shen
(1999).
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The boundary conditions of Eq. (8) become

x ¼ 0; p:
W ¼ Wy ¼ 0 ð18aÞ

F ;xy ¼ 0; Mx ¼ Px ¼ 0 ð18bÞ

1

p

Z p

0

b2 o
2F
oy2

dy þ 4kxb
2 ¼ 0 ðfor compressive buckling problemÞ ð18cÞ

dx ¼ 0 ðfor thermal buckling problemÞ ð18dÞ
y ¼ 0; p:
W ¼ Wx ¼ 0 ð18eÞ

F;xy ¼ 0; My ¼ Py ¼ 0 ð18fÞZ p

0

o2F
ox2

dx ¼ 0 ðfor compressive buckling problemÞ ð18gÞ

dy ¼ 0 ðfor thermal buckling problemÞ ð18hÞ

and the unit end-shortening relationships become
dx ¼ � 1

4p2b2c24
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Z p
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2 o
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dy dx ð19bÞ
With the use of Eqs. (14)–(19), the postbuckling response of shear deformable laminated plates resting
on a tensionless elastic foundation subjected to uniaxial compression or a uniform temperature rise is now

determined by means of a two step perturbation technique, for which the small perturbation parameter has

no physical meaning at the first step, and is then replaced by a dimensionless deflection at the second step.

The essence of this procedure, in the present case, is to assume that
W ðx; y; eÞ ¼
X
j¼1

ejwjðx; yÞ; F ðx; y; eÞ ¼
X
j¼0

ejfjðx; yÞ

Wxðx; y; eÞ ¼
X
j¼1

ejwxjðx; yÞ; Wyðx; y; eÞ ¼
X
j¼1

ejwyjðx; yÞ
ð20Þ
where e is a small perturbation parameter and the first term of wjðx; yÞ is assumed to have the form
w1ðx; yÞ ¼ Að1Þ
11 sinmx sin ny ð21Þ
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The initial geometric imperfection is assumed to have the similar form
W �ðx; y; eÞ ¼ ea�11 sinmx sin ny ¼ elAð1Þ
11 sinmx sin ny ð22Þ
where l ¼ a�11=A
ð1Þ
11 is the imperfection parameter.

All the necessary steps of the solution methodology are described below, but the solutions are not re-

peated here for convenience, with the minor changes included that are needed to make them applicable to

tensionless foundations instead of conventional foundations.

First, the assumed solution form of Eq. (20) is substituted into Eqs. (14)–(17) to obtain a set of
perturbation equations by collecting the terms of the same order of e.

Then, Eqs. (21) and (22) are used to solve these perturbation equations of each order step by step. At

each step the amplitudes of the terms wjðx; yÞ, fjðx; yÞ, wxjðx; yÞ, and wyjðx; yÞ can be determined, e.g. Bð1Þ
11 ,

Bð2Þ
20 , B

ð2Þ
02 , etc., except for B

ðjÞ
00 (j ¼ 0; 2; 4; . . .) and which can be determined by the Galerkin procedure. As a

result, the large deflection asymptotic solutions of W ðx; yÞ, F ðx; yÞ, Wxðx; yÞ and Wyðx; yÞ are obtained.

Next, upon substitution of W ðx; yÞ, F ðx; yÞ, Wxðx; yÞ and Wyðx; yÞ into Eqs. (18c) and (19a) or Eqs. (18d)

and (18h), the postbuckling equilibrium paths for the plate subjected to uniaxial compression can be written

as
kx ¼ kð0Þ
x þ kð2Þ

x W
2
m þ kð4Þ

x W
4
m þ 
 
 
 ð23aÞ
dx ¼ dð0Þ
x þ dð2Þ

x W
2
m þ dð4Þ

x W
4
m þ 
 
 
 ð23bÞ
and for the plate subjected to a uniform temperature rise can be written as
kT ¼ kð0Þ
T þ kð2Þ

T W
2
m þ kð4Þ

T W
4
m þ 
 
 
 ð24Þ
in which Wm is the dimensionless form of maximum deflection, and kðiÞ
x , dðiÞ

x and kðiÞ
T (i ¼ 0; 2; 4; . . .) are given

in detail in Appendix A.

Eqs. (23) and (24) can be employed to obtain numerical results for full non-linear postbuckling load-end

shortening and/or load-deflection curves of shear deformable laminated plates subjected to uniaxial com-
pression or a uniform temperature rise and resting on a tensionless elastic foundation. Since the foundation

reacts in compression only, a possible uplifting region is expected. The solution procedure is complicated

and therefore an iterative procedure is necessary to solve this strong non-linear problem. In applying the

contact condition, the plate area is discretized into a series of grids, and the contact status is assessed at

each grid location. From Eq. (A.2) in Appendix A one can see some equations, e.g. Q11, Q13 and Q31

involving K1, K2 and the contact function H ½W ðxg; ygÞ	, where W ðxg; ygÞ is the deflection at the grid coor-

dinate (xg; yg) and summation is carried out over all grid coordinates by using the Gauss-Legendre quad-

rature procedure with Gauss weight assigned CðMÞ
g . It is found that an acceptable accuracy can be obtained

by taking into account 20�20 points, which is employed in the next section.

As is well known, the instability phenomenon is designed as bifurcation, since it occurs with the

bifurcation of a new equilibrium path from the original one. The buckling load (or buckling temperature)

of perfect plates can be obtained by setting l ¼ 0 (or W
�
=t ¼ 0), while taking Wm ¼ 0 (or W =t ¼ 0). Based

on Eq. (5), when Wm ¼ 0 the buckling load for unilaterally constrained plate is identical to that of the

unconstrained plate. Hence we define kx (Wm ¼ 0þ) as the buckling load for the plate resting on tensionless

elastic foundations. The minimum buckling load (or buckling temperature) is determined by considering

Eq. (23a) or (24) for various combinations of m and n which determine the numbers of half-waves in the
X - and Y -directions respectively.
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4. Numerical examples and discussions

Numerical results are presented in this section for perfect and imperfect, unilaterally constrained shear

deformable laminated plates where the outmost layer is the first mentioned orientation. A computer
program was developed for this purpose and many examples have been solved numerically, including the

following.

The accuracy and effectiveness of the present method for the compressive postbuckling and thermal

postbuckling behaviors of shear deformable laminated plates with or without elastic foundations were

examined by many comparison studies as previously given in Shen (1999, 2000a,b,c, 2001). In addition, the

postbuckling response for an isotropic thin square plate subjected to uniaxial compression are calculated

and compared in Table 1 with the analytical solutions of Dym (1974) and FEM results of Sundaresan et al.

(1996). Then the thermal postbuckling response for a ð�45Þ2T laminated rectangular plate subjected to a
uniform temperature rise are calculated and compared in Table 2 with the FEM results of Thankam et al.

(2003). The material properties adopted here are: E11=E22 ¼ 25, G12=E22 ¼ G13=E22 ¼ 0:5, G23=E22 ¼ 0:2,
m12 ¼ 0:25 and a22=a11 ¼ 10. These comparisons show that the results from the present method are in good

agreement with the existing results, thus verifying the reliability and accuracy of the present method.

A parametric study intended to supply information on the postbuckling response of unilaterally con-

strained shear deformable laminated plates subjected to uniaxial compression or a uniform temperature rise

was undertaken. For all of the examples the plate width-to-thickness ratio b=t ¼ 20, all plies are of equal

thickness and the material properties adopted as in Lee and Lee (1997) are: E11 ¼ 155 GPa, E22 ¼ 8:07 GPa,
G12 ¼ G13 ¼ 4:55 GPa, G23 ¼ 3:25 GPa, m12 ¼ 0:22, a11 ¼ �0:07� 10�6=�C and a22 ¼ 30:1� 10�6=�C.
Typical results are shown in Figs 1–12, in which �kx ¼ rxðb=tÞ2=E22 and �kT ¼ a22DT ðb=tÞ2. It is noted that in

Figs. 1–8, for the plate resting on tensionless elastic foundations the buckling load is obtained by using

W =t ¼ 1:0e� 4. In all these figures W
�
=t and W =t mean the dimensionless forms of, respectively, the

maximum initial geometric imperfection and additional deflections of the plate.

Figs. 1 and 2 give, respectively, the postbuckling load-deflection and load-shortening curves of ð�45Þ2T
laminated rectangular plates with b ¼ 5 resting on tensionless and conventional elastic foundations of the

Pasternak-type subjected to uniaxial compression. Two different values of foundation stiffnesses
ðk1; k2Þ ¼ ð10; 1Þ and ð100; 10Þ are considered. The results for the same unconstrained plate (referred to as

‘‘foundationless plates’’ in the figures) are also given as comparators. The buckling loads of the plate resting

on tensionless elastic foundations with ðk1; k2Þ ¼ ð10; 1Þ and ð100; 10Þ, compared to the buckling load of the

unconstrained plate, represent increases of about 4.8% and 34%, respectively. This increase becomes greater

as the foundation stiffness is increased, or vice versa. The results also show that the postbuckling load-

deflection curve for the plate resting on a tensionless elastic foundation lies between the two of the

unconstrained plate and the plate resting on a conventional elastic foundation.
Table 1

Comparisons of postbuckling response for an isotropic thin square plate subjected to uniaxial compression ðm ¼ 0:3Þ
kx=ðkxÞcr
W =t Sundaresan et al. (1996) Dym (1974) Present

0.0 1.0 1.0 1.0

0.2 1.0137 1.0137 1.0137

0.4 1.0547 1.0546 1.0547

0.6 1.1233 1.1229 1.1232

0.8 1.2198 1.2184 1.2196

1.0 1.3445 1.3413 1.3443

rcrb2t=p2D 4.0081 4.0 4.0



Table 2

Comparisons of thermal postbuckling response for a ð�45Þ2T laminated rectangular plate subjected to a uniform temperature rise

(b=t ¼ 100, E11=E22 ¼ 25, G12=E22 ¼ G13=E22 ¼ 0:5, G23=E22 ¼ 0:2, m12 ¼ 0:25 and a22=a11 ¼ 10)

kT=ðkTÞcr
W =t b ¼ 0:75 b ¼ 1:0 b ¼ 1:5

Thankam et al.

(2003)

Present Thankam et al.

(2003)

Present Thankam et al.

(2003)

Present

0.0 1.0 1.0 1.0 1.0 1.0 1.0

0.2 1.042 1.0412 1.039 1.0392 1.043 1.0427

0.4 1.167 1.1649 1.158 1.1570 1.174 1.1713

0.6 1.376 1.3720 1.356 1.3539 1.393 1.3868

0.8 1.670 1.6640 1.635 1.6309 1.702 1.6911

1.0 2.053 2.0426 1.995 1.9892 2.101 2.0866

a22ðDT Þcrðb=tÞ
2

12.709 12.649 9.493 9.4584 6.410 6.3939

Fig. 1. Postbuckling behavior for a ð�45Þ2T rectangular plate resting on tensionless foundations.
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Figs. 3 and 4 give, respectively, the postbuckling load-deflection and load-shortening curves of ð0=90ÞS
laminated rectangular plates with b ¼ 5 resting on tensionless and conventional elastic foundations of

the Pasternak-type subjected to uniaxial compression. It can be seen that the foundation stiffness affects

the postbuckling response of the ð0=90ÞS plate more than that of the ð�45Þ2T one. In the present exam-

ple the buckling loads of the plate resting on tensionless elastic foundations with ðk1; k2Þ ¼ ð10; 1Þ and
ð100; 10Þ, compared to the buckling load of the unconstrained plate, represent increases of about 13.9%

and 111%, respectively. It can also be seen that the load-shortening curve of the plate resting on a ten-

sionless elastic foundation with ðk1; k2Þ ¼ ð100; 10Þ becomes lower than that of the unconstrained plate

when dx > 2.

It is noted that we choose b ¼ 5 here because for the low value of the plate aspect ratio, e.g. b ¼ 1, there

are no positive deflections and no contact region is expected under the mechanical loading conditions. In



Fig. 2. Postbuckling behavior for a ð�45Þ2T rectangular plate resting on conventional and tensionless foundations.

Fig. 3. Postbuckling behavior of a ð0=90ÞS rectangular plate resting on tensionless foundations.
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contrast, even for the square plate subjected to thermal loading the positive deflection may occur and a

possible contact region is expected as shown in the next example.

Figs. 5 and 6 give, respectively, the thermal postbuckling load-deflection curves of ð�15Þ2T laminated

square plates resting on tensionless and conventional elastic foundations of the Pasternak-type subjected to

a uniform temperature rise. Now the plate buckles with ðm; nÞ ¼ ð1; 2Þ and a possible contact region is

expected. The thermal buckling loads of the plate resting on tensionless elastic foundations with



Fig. 4. Postbuckling behavior of a ð0=90ÞS rectangular plate resting on conventional and tensionless foundations.

Fig. 5. Thermal postbuckling load-deflection curves for a ð�15Þ2T square plate resting on tensionless foundations.
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ðk1; k2Þ ¼ ð10; 1Þ and ð100; 3Þ, compared to the thermal buckling load of the unconstrained plate, represent
increases of about 6% and 25%, respectively.

Figs. 7 and 8 give, respectively, the thermal postbuckling load-deflection curves of ð90=0ÞS laminated

rectangular plates with b ¼ 5 resting on tensionless and conventional elastic foundations of the Pasternak-

type subjected to a uniform temperature rise. In this case, the unconstrained plate and the plate resting on a

tensionless elastic foundation with ðk1; k2Þ ¼ ð10; 1Þ have buckling mode ðm; nÞ ¼ ð6; 1Þ, and for the plate

resting on tensionless and conventional elastic foundations with ðk1; k2Þ ¼ ð100; 3Þ the plate buckles with

ðm; nÞ ¼ ð7; 1Þ. Note that for these two plates, ð�15Þ2T and ð90=0ÞS, when ðk1; k2Þ ¼ ð100; 10Þ the plates will
have buckling mode ðm; nÞ ¼ ð1; 1Þ and no contact region is expected.



Fig. 6. Thermal postbuckling load-deflection curves for a ð�15Þ2T square plate resting on conventional and tensionless foundations.

Fig. 7. Thermal postbuckling load-deflection curves for a ð90=0ÞS rectangular plate resting on tensionless foundations.
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Postbuckling load-shortening and/or load-deflection curves for imperfect as well as perfect plates are
plotted in each of Figs. 1–8. The imperfect curves show that the effect of an initial geometric imperfection

on the postbuckling response is substantial. This conclusion is valid for the plate resting on both tensionless

and conventional elastic foundations.

Fig. 9 shows the deformed shapes of perfect ð�45Þ2T and ð0=90ÞS plates resting on tensionless elastic

foundations of three different values of k1 and k2 in the postbuckling range (W =t ¼ 1:0). It can be seen that

the contact area increases slightly as foundation stiffness increases. The transverse displacements in the

contact regions are smaller than those in the non-contact regions. If the foundation is quite rigid, e.g.

ðk1; k2Þ ¼ ð100; 10Þ and ð200; 20Þ in this example, there are no transverse displacements in the contact re-
gions. Fig. 10 shows the deformed shapes of unilaterally constrained perfect ð�45Þ2T and ð0=90ÞS plates at
different points of the postbuckling path (W =t ¼ 0:5, 0.75, 1.0). It can be seen that the difference between



Fig. 8. Thermal postbuckling load-deflection curves for a ð90=0ÞS rectangular plate resting on conventional and tensionless founda-

tions.

Fig. 9. Deformed shapes of perfect laminated plates with different values of foundation stiffness in the postbuckling range.
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the displacements in the contact and non-contact regions decreases as the applied load is increased. Note

that in Fig. 10, the mode of postbuckling deformation is unchanged, i.e., ðm; nÞ ¼ ð6; 1Þ for the ð�45Þ2T
plate and ðm; nÞ ¼ ð3; 1Þ for the ð0=90ÞS plate. The results also show that the contact area remains constant

when the deflection increases from W =t ¼ 0:5 to 1.0. In reality, mode changes are possible in the deep

postbuckling range (Chai, 2001), and as a result the contact region expands as the plate deflection is

increased and the effect of unilateral constraint becomes more pronounced.

Figs. 11 and 12 are thermal postbuckling results of ð90=0ÞS plates analogous to the compressive

postbuckling results of Figs. 9 and 10. They lead to broadly the same conclusions as do Figs. 9
and 10.



Fig. 10. Deformed shapes of perfect laminated plates supported by a tensionless foundation in the postbuckling range.

Fig. 11. Deformed shapes of perfect ð90=0ÞS plates with different values of foundation stiffness in the thermal postbuckling range.

Fig. 12. Deformed shapes of perfect ð90=0ÞS plates supported by a tensionless foundation in the thermal postbuckling range.
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5. Concluding remarks

Postbuckling analysis of shear deformable laminated plates supported by a tensionless elastic foundation

of the Pasternak-type subjected to in-plane compressive edge loads or a uniform temperature rise has been
presented by using an analytical–numerical method. The advantage of the present method is that the

solution is in an explicit form which is easy to program in computing full non-linear load-end shortening

and/or load-deflection curves without any prior assumption for the shape of the contact region. A para-

metric study for perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates

has been carried out. The numerical results showed that the unilateral constraint has a significant effect

on the postbuckling response of the plate subjected to either mechanical or thermal loading when the

foundation stiffness is sufficiently large.
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Appendix A

In Eqs. (23) and (24)
ðkð0Þ
x ; kð2Þ

x ; kð4Þ
x Þ ¼ 1

4b2c14C11

ðS0; S2; S4Þ; ðkð0Þ
T ; kð2Þ

T ; kð4Þ
T Þ ¼ 1

c14C11

ðS0; S2; S4Þ

dð0Þ
x ¼ c24kx; dð2Þ

x ¼ 1

32b2
C11ð1þ 2lÞ

dð4Þ
x ¼ 1

256b2
c14c24C

2
11

m4

c7J13

�
þ n4b4

c6J31

�
ð1þ lÞ2ð1þ 2lÞ2

ðA:1Þ
in which (with gij and gijk defined as in Shen (1999))
S0 ¼
Q11

ð1þ lÞ ; S2 ¼
1

16
c14c24H2ð1þ 2lÞ; S4 ¼

1

256
c214c

2
24C11ðC24 � C44Þ

C24 ¼ 2ð1þ lÞ2ð1þ 2lÞ2H2

m4

c7J13

�
þ n4b4

c6J31

�
C44 ¼ ð1þ lÞð1þ 2lÞ½2ð1þ lÞ2 þ ð1þ 2lÞ	 m8

c27J13

�
þ n8b8

c26J31

�
J13 ¼ Q13C11ð1þ lÞ � Q11C13; J31 ¼ Q31C11ð1þ lÞ � Q11C31

Q11 ¼ H11 þ
XM
g¼0

CðMÞ
g H ½W ðxg; ygÞ	½K1 þ K2ðm2 þ n2b2Þ	

Q13 ¼ H13 þ
XM
g¼0

CðMÞ
g H ½W ðxg; ygÞ	½K1 þ K2ðm2 þ 9n2b2Þ	

Q31 ¼ H31 þ
XM
g¼0

CðMÞ
g H ½W ðxg; ygÞ	½K1 þ K2ð9m2 þ n2b2Þ	
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H11 ¼ g08 þ c14c24m
2n2b2 g05g07

g06
; H2 ¼

m4

c7
þ n4b4

c6
þ C22

H13 ¼ g138 þ c14c249m
2n2b2 g135g137

g136
; H31 ¼ g318 þ c14c249m

2n2b2 g315g317
g316

c6 ¼ 1þ c14c24c
2
230

4m2

c41 þ c3224m2
; c7 ¼ c224 þ c14c24c

2
223

4n2b2

c31 þ c3224n2b
2

ðA:2Þ
in the above equations, for the case of uniaxial compression
C11 ¼ C13 ¼ m2; C31 ¼ 9m2; C22 ¼ 0 ðA:3Þ
and for the uniform temperature loading case
C11 ¼ ðcT1m2 þ cT2n
2b2Þ; C13 ¼ ðcT1m2 þ 9cT2n

2b2Þ; C31 ¼ ð9cT1m2 þ cT2n
2b2Þ

C22 ¼ 2
ðm4 þ c224n

4b4Þ þ 2c5m
2n2b2

c224 � c25

ðA:4Þ
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